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SUMMARY

The coastal environment is a highly dynamic region that is not understood very
well, thus research efforts are underway to aid in the development of more accurate
models that predict the optical properties of the water, determine bottom albedo, and
develop methods for accurately measuring the environmental parameters needed by
the models. The work presented in this thesis is in support of ongoing research by
the Naval Research Laboratory using airborne hyperspectral imagery for the remote
sensing of coastal environmental parameters. These research programs are intended
to support the Navy's efforts in mine countermeasures, amphibious warfare, and
shallow-water antisubmarine warfare.
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Abstract

High resolution spectral data collected during field exercises at Eglin Air Force

Base, near Fort Walton Beach, Florida, during August 1994 are presented to demonstrate

the usefulness of this type of data for estimating the reflectance of land and water features

in a coastal marine environment. The data consists of spectral imagery collected by the

Compact Airborne Spectrographic Imager (CASI) and in-situ spectral data measured by

the Analytical Spectral Devices, Inc. VNIR FieldSpec (ASD).

A remote sensing reflectance model is used to compute water reflectance from the

CASI and ASD data. The good agreement between the CASI and ASD results suggest

that airborne and eventually spaceborne hyperspectral sensors can be used to measure

water reflectance. The spectral reflectance signatures of several land features found at the

Eglin test site demonstrate that hyperspectral data is a valuable tool for distinguishing

between features. Principal component analysis is also used in an effort to reduce the

dimensionality of the hyperspectral data. The results show that, for both the CASI and

ASD data, over 90% of the variability of the data is contained in the first two principal

components. The data analysis procedures developed to process both the CASI and ASD

data are also presented.
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Chapter 1

Introduction

The purpose of this paper is to demonstrate the suitability of high resolution

spectral data for remote sensing of coastal environmental parameters. The spectral data

presented in this paper was collected during August 1994 at Eglin Air Force Base near

Fort Walton Beach, Florida. The data consists of hyperspectral imagery from the

Compact Airborne Spectrographic Imager (CASI) and high resolution spectra collected

in-situ using the hand held Analytical Spectral Devices, (ASD) Inc. VNIR FieldSpec.

The major results of this thesis show that CASI spatial mode imagery can be used

to measure remote sensing reflectance of the water in a coastal marine environment. The

reflectance of the water was found to be less than 5%, which is within the expected range.

The hyperspectral reflectance signatures of land features also demonstrate that this type

of data can be used to distinguish between other features, including the water. Principal

component analysis (PCA) was also used to reduce the dimensionality of the

hyperspectral data. Over 90% of the variation in the data is in contained in the first two

principal components. Although the PCA results are not completely understood, they are

intriguing, thus further research with this technique is definitely warranted.

Optical remote sensing instruments are categorized as either passive or active. An

active sensor detects the reflected light from its own light source. An airborne laser
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system used for measuring bathymetry is an example of an active remote sensor. In

contrast, passive remote sensors detect the amount of sunlight reflected from the earth's

surface. CASI is an example of a passive remote sensor. These sensors separate the

reflected light into a number of spectral channels or bands that span the visible and

infrared portion of the electromagnetic spectrum. The number of bands and the spectral

coverage varies from sensor to sensor. Multispectral imaging (MSI) sensors, such as the

LANDSAT satellite, have only a few bands; usually less than 10. Other sensors, such as,

CASI and the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS), have hundreds

of narrow bands and are referred to as hyperspectral imaging (HSI) sensors.

MSI and HSI sensors have been used in a variety of applications ranging from

global environmental monitoring, mapping, charting, geodesy, land use planning, natural

resource management, water quality monitoring, oceanography, and wildlife habitat

management. and are being used to collect imagery in the coastal maritime environment.

Most of these sensors, however, were originally designed and optimized for use over

land. The one notable exception is the Coastal Zone Color Scanner (CZCS) which was

designed specifically for measurement of the optical properties of the world's oceans.

The application of high resolution spectral data in a coastal marine environment in

the focus of this paper. Researchers have used both MSI and HSI sensors to extract

environmental parameters, such as, water clarity, chlorophyll concentration, particulate

and biological absorption and scattering, bathymetry, bottom reflectance and suspended

sediment concentrations [3,7,9,13,14]. The problem that usually exists with using most
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MSI sensors in the maritime environment is the lack of adequate spectral coverage in the

blue and green portions of the visible spectrum. These wavelengths contain the important

absorption and reflectance bands for detecting chlorophyll and other biological matter.

Additionally, the blue and green wavelengths penetrate deeper into the water and are

useful for bathymetry and bottom characterization. As a consequence of their high

spectral resolution, the HSI sensors provide more than adequate spectral coverage

throughout the visible spectrum. Additionally, by resampling of both the pixel size and

channel bandwidth of HSI data, unaliased simulations of other current and future MSI

and HSI sensors can be performed.

The lack of reliable high resolution data in coastal areas has hampered coastal

optics model development. The lack of data is due in part to the costly and time

consuming method of in-situ measurements by ship. The advantages of using airborne or

satellite remote sensors to collect data versus ship measurements are rather obvious. For

instance, remote sensors can collect data at a faster rate, with high spatial resolution, and

with the capability of a shorter time between revists. Remote sensors are also capable of

collecting data in areas where access is denied by foreign countries.

Increased measurement and modeling research by government, university, and

private sector groups has begun in order to address the need for a better understanding of

the coastal environment. The Department of Defense (DOD) is placing more emphasis

on regional conflicts, such as the Persian Gulf War, since the perceived threat from deep

ocean submarines has decreased due to the end of the Cold War. The US Navy has
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refocused efforts from deep ocean scenarios to the littoral scenario, which encompasses

the coastal environment. Understanding the coastal environment is vital to the successful

planning and execution of Naval operations. Reduced research budgets in all sectors has

led to joint research efforts between DOD, NASA, NOAA, university, and private sector

organizations. By combining resources researchers are provided opportunities to collect

coincident and comprehensive data that include MSI, HSI, and the necessary in-situ

measurements that are needed in the development of coastal optics models. The data

presented in this paper was collected as part of a joint DOD research project.

The layout of this paper is as follows. Chapter 2 will provide the background

information including recent research using HSI sensors in coastal areas, as well as, a

summary of the remote sensing reflectance model used in this paper. Chapter 3 describes

the data collected during the Eglin field exercises and gives a description of how the data

was analyzed. The results are provided in Chapter 4, followed by the conclusions and

recommendations in Chapter 5.
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Chapter 2

Background

The purpose of this chapter is to provide a brief overview of previous research

conducted using passive optical remote sensing instruments for studying the maritime

environment. A summary of the remote sensing reflectance model used in this paper will

be presented, as well as background information on principal component analysis (PCA).

The information provided in this chapter is by no means exhaustive. The reader is

encouraged to obtain the references cited below for more detailed information.

2.1 Theory

An in-depth presentation of the physics that models the path of sunlight as it

travels from the top of the atmosphere, to the earth's surface, its interaction with the

ocean, and its return back through the atmosphere to the detectors of the remote sensing

instrument is beyond the scope of this work. A collection of papers consolidated by Jerlov

[1] and Tyler [2] give an overall view of optical oceanography and the physics of light in

sea water. In general, the remote sensing instrument detects the amount of sunlight that is

reflected by features on the earth's surface. As depicted in Figure 1, the sunlight first must

travel through the atmosphere where the light is either scattered by molecules (Rayleigh)

or aerosols, or is absorbed by ozone, oxygen, water vapor, or other gases. The air-water

interface further attenuates the light according to the Fresnel reflection coefficient of
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water. Once in the water, the light again encounters absorption and scattering. The water

itself, along with pigments in photosynthetic plant material and colored dissolved organic

material (CDOM) are responsible for a majority of the absorption. In the turbid coastal

areas, scattering is attributed to suspended sediments and biological particulates. In

shallow areas the bottom affects the light by reflection or absorption.

The use of satellite or airborne MSI for monitoring of the ocean environment is not

a new concept. The Coastal Zone Color Scanner (CZCS) was the first satellite ocean

color sensor with four bands in the visible and one in the near-infrared [5]. Researchers

have used CZCS data to study the relationships between physical processes, watermass

variability, and photosynthetic productivity in the ocean. For instance, Gordon et al. [6]

related CZCS estimates of chlorophyll concentrations to the turbidity of the water (diffuse

attenuation coefficient). Austin and Petzold [7] used the power law of spectral radiance

ratios to relate CZCS radiance to the diffuse attenuation coefficient. Arnone et al. [8]

developed a world-wide CZCS ocean color database, at 20km spatial resolution, capable

of providing climatological estimates of the water optical properties. A follow-on satellite

to the defunct CZCS, SeaWiFS has been developed, however, the launch date has been

postponed. Notwithstanding the important contributions of CZCS, and potentially

SeaWiFS, to the understanding of physical processes in the ocean environment, these

instruments are not suitable for some applications, particularly Naval operations, in the

near-shore coastal environment due the rather coarse spatial resolution (approximately

lkm for CZCS), and limited spectral range. The coastal environment typically consists of

land features as well which are consequently masked out by both CZCS and SeaWiFS.
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LANDSAT, with its seven spectral bands, four visible, one near-IR, one mid-IR

and one thermal, was primarily designed for use over land, however, it has been used to

measure maritime environmental parameters, such as bathymetry and bottom type.

Algorithms for extracting bathymetry from MSI have been proposed by several authors

[9,10,11]. These algorithms are based on a simple water reflectance model given by

Li = Lf ++ciRiei2kz (1)

L is the radiance received by the remote sensor for band i, Lo is the deep-water radiance

due to external reflection of the sea surface, atmospheric scattering, and water volume

scattering, c; is a constant attributed to solar irradiance, atmospheric and sea surface

transmittance and sea surface refraction, Rai is the bottom reflectance, ki is the effective

attenuation coefficient of the water, and z is the water depth. Estimating sediment

concentration [12] and sediment transport [13] are other applications of LANDSAT data.

Hyperspectral sensors, such as AVIRIS, have also been used to study the coastal

environment. AVIRIS has 224 narrowly spaced spectral channels ranging from 400nm to

2400nm. AVIRIS also was originally developed for use over land, however, due to its

high spectral (9.5 nm) and spatial (20m) resolution it is being used as a testbed for ocean

optics algorithm development. Its narrow channels also allow researchers to produce

unaliased simulations of many of the current and future imaging sensors. Carder et al.

[14] and Hamilton et al. [15] demonstrate the use of AVIRIS data in computing water

optical properties, such as reflectance, absorption, and chlorophyll content.
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Analyzing spectral data in marine environments is much more challenging than in

geologic or vegetative areas. Due to the exponential increase in light attenuation in the red

wavelengths, most ocean optics research is limited to the visible spectrum in the 400nm to

700nm range. Additionally, the reflectance of water targets are on the order of only 2% to

7%, whereas the reflectance of land targets range 10% to 50% or higher. A typical

coastal scene might contain land features, such as, beach sand, grass, roads, trees, etc., in

addition to the water. Therefore, the remote sensing instrument must have both adequate

signal-to-noise ratio (SNR) and dynamic range in order to accommodate the wide range of

reflectances that may be encountered.

Hamilton et al. [15] used AVIRIS data over Lake Tahoe to estimate chlorophyll

content and compared those results to in-situ measurements. The clear waters of Lake

Tahoe closely match those of the clearest ocean waters. The CZCS chlorophyll algorithm

developed by Gordon et al. [6], was used to compute chlorophyll concentration from the

AVIRIS data. There was good agreement between the AVIRIS estimated chlorophyll

concentration and the in-situ measurement. However, poorer results were obtained at

other locations. The authors attributed the error to the covarying absorption of CDOM

with chlorophyll at 440 nm, which the model could not correct for, and inaccurate

calibration of AVIRIS in the blue wavelengths. The paper also showed that AVIRIS

derived upwelling radiance (Lw) agreed very well with in-situ measurements as shown in

Figure 2. Additionally, the authors pointed out that since AVIRIS lacks the SNR,

especially in the blue, to resolve changes in photosynthetic pigments, thus spatial

averaging is necessary. Pilorz and Davis [16] indicated that a SNR of 95, including
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Hamilton et al. 19931-
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atmospheric effects, was needed to detect changes chlorophyll concentration on the order

of I mg m3.

Carder et al. [14] compared remote sensing reflectance (R,.), derived from

AVIRIS imagery, with in-situ measurements. Spatial averaging was also used to increase

SNR. Additionally, the authors used a post-flight recalibration scheme to improve the

sensitivity of the sensor, particularly in the shorter wavelengths. Figure 4 illustrates the

good agreement between the AVIRIS measured R,1. and the in-situ measurements. The

paper also uses the models described by Lee et al. [4] to quantify the components of R,.

For instance, Figure 3 compares AVIRIS measured R,, with modeled results of Rs, remote

sensing reflectance due to bottom reflectance (Rdsb), and reflectance of the water from

scattering due to molecules and particles (R,,,). A deep-to-shallow transect illustrating

spectral changes due to changes in depth is shown in Figure 5.

The upwelling light sensed by passive spectral sensors contains a mixture of all of

the absorption and scattering effects of the constituents present in the water. No reliable

procedures have been developed to unmix these effects from water spectra. An

abundance of geological applications exist which use linear and non-linear spectral

unmixing algorithms to identify and determine the relative abundances of components in

mixed reflectance spectra. For example, Kruse et al. applied linear spectral unmixing

techniques to the mapping of minerals using AVIRIS [18], while Huete and Escadafal [19]

used linear unmixing techniques to characterize soil spectral signatures from LANDSAT

data. Some water applications do exist, most notably in the area of suspended sediments.

Mertes et al. [13] used unmixing techniques to estimate suspended sediment
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concentrations from LANDSAT data. In these applications, it is assumed that a mixed

spectra can be modeled as a linear combination of pure members of an endmember library.

2.2 Model

The light detected by the remote sensor depicted in Figure 1 is a combination of

the effects from the atmosphere, water, and bottom. The total radiance detected by the

sensor, from Gordon and Clark [3], can be expressed as

L(X) = Lr (X) + La (X) + t(X) L, (X) , (2)

where Lr (X) is the radiance due to Rayleigh scattering, La(X) is the radiance due to

aerosol scattering, L,(X) is the water leaving radiance, and t(X) is the atmospheric diffuse

transmission. Lee et al. [4] show that Lw(X) can be expressed by a sum of its components

L, (X) = Lk w (X) + Lbw (X) + L!w (k) + LRW (X), (3)

where L'w (X) is the radiance from scattering due to molecules and particles, LJ, (X) is the

radiance from bottom reflectance, Lf, (X) is the radiance due to CDOM fluorescence, and

L'O (X) is the radiance due to Raman scattering.

In order to remove the implied solar contribution in Equation (2), remote sensing

reflectance, defined to be the ratio of the upwelling radiance to the above surface

irradiance, and given by

R =E (+) ' (4)
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can be used instead. For clarity, the wavelength dependence, although not indicated, is

assumed. Rl, is also expressed as a sum of its components as shown by

R. (k) = R"" (X) + R b(X) + R' (?,) + RR (X) .(5)

Equation (4) forms the basis for most of te.e computations applied to the spectral data

presented in this paper. The reflectance spectra can be used to distinguish between the

many different features found in the coastal environment.

2.3 Principal Component Analysis

Principal component analysis (PCA) is known by a variety of other names, such as

the eigenvector analysis, the Hotelling transform, or discrete Karhunen-Loeve transform.

PCA is based on the statistical properties of vector representations. An outline of the

pertinent equations will be provided in this section. A more detailed discussion of this

technique is described in [21],and [22].

Hyperspectral data provides many additional bands across the entire

electromagnetic spectrum. The spectral range between 400 nm and 700 nm is of primary

importance to the oceanographic community. CASI has 170 bands and the ASD

instruments have 210 bands within that range. Dealing with 200 or so bands is messy and

cumbersome to say the least. PCA was chosen to attempt to reduce the number of bands

needed in processing both the CASI and ASD spectral data in a systematic manner, yet

maintaining the variability within the data.
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The spectra collected either by CASI or ASD can be considered as a population of

random spectra of the form

x= x2 (6)

The mean of the population is m. = E{x}. The covariance matrix of the population is

defined as

C. = Et(x - m.) (x - m.)T} (7)

Note that C. is a square matrix of size n x n. Element cii is the variance of xi, the ith band

of the spectra and ciy is the covariance between bands i and j. The covariance matrix is

real and symmetric. Assume that there are M sample spectra from the random population

of spectra. The mean and covariance matrix for the population can be approximated from

the samples by

lM
MX= MX (8)

M k=

and

1M
Cx= M a XkXk -m.m. (9)

By definition, the eigenvectors and eigenvalues of C satisfy the relation

(10)Cei = Xjej, for i = 1, 2, ..., n.
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If A is a matrix whose columns are formed from the eigenvectors of Cx ordered such that

the first column of A is the eigenvector corresponding to the to the largest eigenvalue and

the last column of A is the eigenvector corresponding to the smallest eigenvalue. A is

known as the principal component matrix which can be used to transform by

y = AT(x - min) (11)

The elements of y are uncorrelated. Furthermore, Cy has the same eigenvalues and

eigenvectors of C.. Any x can be recovered from its corresponding y by the equation

x = Ay + m1 (12)

Since A is has orthonormal rows A1 = AT. Equation (12) can be used to estimate by

using only the first K eigenvectors corresponding to the first K largest eigenvalues. The

estimated x vector is given by

x= AKy+mM (13)

The mean square error (MSE) is given by

n

WkE-= Ix (14)
j=K+1

Thus, by using the K largest eigenvalues, the mean square error is minimized between x

and i.

The reason for using PCA for the spectral data is to hopefully find a reduced

number of uncorrelated parameters that represents the original spectra within some

tolerable MSE. Ideally, it would be extremely useful to be able to associate each of the
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principal components with some physical phenomenon (i.e. brightness, bathymetry, water

clarity, etc).
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Chapter 3

Procedures

The data processing and analysis procedures described in this chapter were

developed specifically to process both the ASD and CASI data for the Eglin field exercises

held during August 1994.

3.1 Statement of Problem

One of the goals of this thesis is to determine the reflectance of the water, in a

coastal marine environment, using airborne hyperspectral data collected by the CASI

sensor and compare it to ground truth data in the form of high resolution spectral data

using the Analytical Spectral Devices (ASD), Inc. VNIR FieldSpec. Additionally, the

hyperspectral reflectance signature of a feature (i.e. sand, water, vegetation, etc.) found in

the coastal environment can be used to distinguish it from other features. The reflectance

is an important property of a feature since it is independent of illumination and is

dependent upon the physical and chemical composition of the feature.

The coastal marine environment is not well understood is much more complex than

the open ocean due to the presence of dissolved and particulate matter which have varying

absorption, scattering, and fluorescence properties, as well as, influences due to varying

bottom type and bathymetry. The upwelling radiance and ultimately the spectral
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reflectance detected by the passive remote sensor is a combination of all of these

absorption and scattering effects within the water column and on the bottom. Previous

multispectral data sources, like CZCS, provided valuable information on ocean optical

properties, however, its large spatial resolution, 800m, would be undesirable for nearshore

environments. The future of the multispectral SeaWiFS instrument, the CZCS follow-on,

is unclear, therefore, ocean color researchers, in the meantime, will have to rely on

airborne HSI sensors to provide data for model development. This paper does not

attempt to develop any new models. Instead the remote sensing reflectance model

described in Chapter 2 is used.

3.2 Data Collection

The CASI instrument is one of 19 known airborne hyperspectral sensors either

available now or in the near future [17]. Table 1 [17] provides a brief summary of the

characteristics of the known hyperspectral sensors. The CASI sensor, developed by

ITRES Research Ltd. and flown by Borstad Associates, is a lightweight, portable,

pushbroom scanner controlled by a 386 PC that can be flown in a variety of small aircraft.

CASI was flown in a Cessna 172 aircraft at altitudes ranging from 1100 ft to 10000 ft

during the Eglin field exercises. Pushbroom scanners collect imagery by scanning a line at

a time perpendicular to the motion of the aircraft (across-track). The forward motion of

the aircraft allows the sensor to sweep a swath of data along track, thus forming an image.

CASI has two different modes of operation: spatial and spectral.
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Table 1: Hyperspectral Sensor Specifications. [Table 1 from Birk and McCord 19941.
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In the spatial mode, CASI operates similar to other pushbroom imagers by

collecting high resolution spatial imagery simultaneously in up to fifteen programmable

bands. In spectral mode, CASI collects high resolution spectral information in 288, 1.8nm

bands. Data is not collected across the entire swath, but in one or more user selectable

spectral columns, called "look directions", across the swath. The spectral mode also

provides a coregistered monochromatic high spatial resolution reference image which is

formed from data from the "track recovery row". The purpose of the reference image is

for target location and spatial orientation for the spectral data. Unlike AVIRIS, which

collects full spectral and spatial data simultaneously, the CASI operating modes do not

operate simultaneously.

The spatial resolution of CASI varies according to altitude, airspeed, and sensor

integration or exposure time. In general, the across track and along track resolutions are

not the same, therefore, the data is spatially resampled in order to obtain square pixels.

The spatial resolution of the CASI data collected at Eglin ranged from about 2.5m to 4m.

In spectral mode, the along track resolution was on the order of 10m.

The ASD instrument was used to measure the spectral reflectance of various land

and water targets. The instrument is comprised of a 512 plasma coupled photodiode

array, controlled by a 486 notebook computer. Input to the spectrometer is via a lm fiber

optic cable with a pistol grip attachment. An 18° field-of-view (FOV) tube to restrict the

field of view was attached to the end of the pistol grip. The ASD has 512, 1.4nm bands in

the range from 350nm to 1 100nm. Integration time is manually selectable with a range
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from 16 ms to 4 minutes. The 486 notebook computer also provides real-time display and

storage of the measured spectra.

During the Eglin field exercises, CASI was flown at various altitudes, in both

spatial and spectral mode, twice daily. Using two identically equipped ASD instruments,

in-situ spectra at various stations, both in water and on land, were measured concurrently

with the CASI overflights. While one of the ASD instruments made measurements at sea,

the other instrument made simultaneous measurements of the reference target and the sky.

Using the ASD instruments in tandem reduced the measurement load of the instrument at

sea. As each ASD measurement was made, ancillary information, such as target

description, sky conditions, reference target used, integration time, and output filename,

were recorded on log sheets.

The CASI spatial data was roll and pitch corrected, georeferenced, and

radiometrically calibrated by Borstad Associates prior to delivery. The spatial data was

resampled so that the final pixel size was square. The only pre-processing performed on

the spectral data by Borstad Associates was to convert the data to radiance values. The

ASD instruments were not radiometrically calibrated, thus only raw digital counts were

available. Since reflectance is the ultimate output, radiometric calibration of the ASD

instruments, although desirable, is not really necessary.

3.3 Data Processing and Analysis

The data processing software developed to analyze the ASD and CASI data was a

combination of code written in C, Interactive Data Language (IDL), and MATLAB, all of
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which was developed specifically for this project. The data was processed using a SUN

SPARC2 UNIX workstation and a 486 PC.

Each ASD spectra is stored in a binary file comprised of a 484 byte header block,

which contains information pertaining to the state of the instrument at the time that the

spectra was saved, followed by the actual spectral data. The header information that was

important to the data processing included the integration time, dark current correction

flag, and time stamp. The dark current is the amount of current due to heat added to the

detector output, which varied with time and temperature. Spectra without the dark

current correction were not used.

Over 1500 ASD spectra were collected during the Eglin field experiment. In order

to document all of the spectra taken, a prorgram, written in IDL, was developed that each

spectra along with the header information mentioned in the previous paragraph. The

program prints nine spectra to a page as illustrated by Figure 6. This hardcopy log of the

spectra becomes invaluable during data processing because it provides an efficient method

in which to examine each spectra and correlate the header information with the log sheets.

Since the values of the ASD spectra were in units of digital counts, each spectra

was normalized by its respective integration times prior to use in any of the calculations.

Using the procedure described by Hamilton et al. [15], the ASD spectra were used to

compute Rrin Equation (4) using the formula

R. = S-+s ,SP(0) (15)
(2t6g /rg)
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S is the spectra from the water plus reflected skylight, S, is the spectra from the

skylight, Sg is from the known reference standard, rg is the reflectance of the reference,

p(O) is the Fresnel reflectance of seawater (p(O) = 0.021). The reflectance of land targets

is computed using

Rt = S (16)
S g

where S. is the spectra of the target. Equations (15) and (16) relaxes the necessity of

absolute radiance calibration of the ASD instruments.

When spectra from both instruments were needed to compute Rrr, all of the spectra

were converted to a common bandset, using linear interpolation, prior to using Equation

(15). This step is necessary for accurate results because the two ASD instruments had

different spectral response. The initial wavelength for instrument 701 (ASD701) was

331nm with a bandwidth of 1.4195nm. The initial wavelength for instrument 702

(ASD702) was 313 nm with a 1.416nm bandwidth. The difference in spectral response

becomes apparent when each instrument is viewing a target simultaneously. As an

illustration, Figure 7 shows the raw spectra of one of the plywood targets measured by

each instrument.

All of the CASI data was provided in ERDAS LAN band interleaved by line (BIL)

format. The CASI data needed to be converted to reflectance so that comparisons to the

ASD measurements could be made. In regard to the CASI data, only upwelling radiance

(L,) is known in Equation (4). Therefore, Ed must be computed in some manner since no

measurement of it was made. This was accomplished by first using the reflectance of a
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land target visible in the CASI scene, measured by the ASD instruments, and using this

result to compute Ed at that location. Assuming that Ed was constant throughout the

image, R.,, was computed for the rest of the pixels in the image. This processing step also

removes any atmospheric effects from the CASI imagery. It is also assumed that the

atmospheric conditions are constant throughout the scene.

The principal components analysis (PCA) technique was applied to deep-to-

shallow transects from both ASD and CASI spectral data. The goal of this processing

step was to reduce the dimensionality of the spectral data (i.e. number of bands) yet

maintain the variance of the data. As described in Chapter 2, this technique requires

computation of the covariance matrix. The size of the covariance matrix is n by n, where

n is the number of bands. For the ASD data, n = 512, while for the CASI data, n = 288.

It is quite apparent that the size of the covariance matrix is quite large and uses quite a bit

of memory. In order to reduce the memory requirements, both the ASD and CASI

datasets were reduced to 64 bands each, 400 nm to 800 nm, with 8nm bandwidths, using

linear interpolation.
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Chapter 4

Results

This chapter will present the results from the analysis of the hyperspectral data

collected during the Eglin field exercises. The comparison of CASI RN to ASD measured

R4, are the primary results. The full suite of in-situ measurements needed to make full use

of the model described by Lee et al. [4] were not made during these exercises. Although

water absorption, scattering, and diffuse attenuation coefficient were measured during the

experiment, the data was not available yet for comparison with the spectral data presented

in this paper.

Figure 8 is an overview of the Eglin test site as seen from a CASI spatial mode

image. The sand bar running parallel to the beach is the only significant underwater

feature that is visible. The land areas are comprised mainly of bright, white sand mixed

with patches of vegetation. The depth of the water at the sand bar is approximately 2m.

The bottom, which consists primarily of sand, has a gradual slope. The bathymetry,

shown in Figure 9, was collected by the Army Corps of Engineers' SHOALS system.

ASD water spectra were measured at several preselected stations, indicated by

Table 2, as well as along deep-to-shallow transects. The deepest ASD station was in

approximately 10m of water. ASD spectra were also collected on land along the beach

and in the surrounding area near roads and parking lots. The types of land targets

included sand, sea oats, grass, concrete, and asphalt. In addition to the water
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measurements, spectra of an underwater target and algae were also made. No accurate

positioning of the ASD measurements is available.

Station # Name Water Depth

1 Sand Bar 3m

2 Shallow Plywood 5m

3 Shallow Mooring 3.3m

4 Deep Mooring 8.5m

Table 2: The ASD stations and the approximate water depth.

Every object or feature has a unique spectral signature based on its chemical or

physical makeup. Figure 10 shows sample spectral signatures of sand, grass, algae, and

water measured using the ASD instrument Differences between the raw sample spectra

are readily visible, however, spectra are typically represented in terms of radiance (W mn2

sr-' nm-1 ) or reflectance. The ASD instruments were not calibrated to produce actual

radiance values, therefore, the spectra in Figure 10 were converted to reflectances as

shown in Figure 11 using the method described in Chapter 3. The reflectance signatures

clearly illustrate the wide range in reflectance that may be encountered in the coastal

environment and that each feature exhibits a unique signature. The grass and algae

signatures are similar as expected. Notice that the reflectance of the land targets are much

greater than the water reflectance.

In comparison, Figure 12 shows the spectral signatures of deep water, water at the

sandbar, and vegetation, expressed in terms of radiance, extracted from a CASI spectral

mode image. Converting the CASI spectra to reflectance requires knowledge of either

downwelling irradiance (Ed), or the reflectance of a target that is visible in the imagery.
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Since no measurements of Ed were made, a reference target of known reflectance must be

located in the imagery. Figure 13 is the track recovery row image from a CASI spectral

mode image. As this figure illustrates, it is quite difficult to locate specific targets from a

CASI spectral mode image. This image has no roll, or pitch corrections applied to it nor

has it been georeferenced. Because of the difficulties with selecting a reference target

from the track recovery row images no direct comparisons with ASD spectra will be

presented. Plywood targets, which were placed out in the water to serve as reference

targets for the CASI imagery, although visible in the spatial imagery, proved to be too

small to serve as references. The plywood pixels are at best 1 pixel in size and, due to the

spatial resampling of the imagery to create square pixels, the plywood pixel is a mixture of

both water and plywood.

Figure 14 shows R,. computed, from the ASD data, at the shallow plywood and

deep mooring stations on August 9. The amplitude difference between the two spectra

and the peak at about 560 nm are related to the increasing effects of the bottom

reflectance from the sandy bottom. An ASD deep-to-shallow transect measured on

August 11, shown in Figure 15, clearly shows the significant increase reflectance centered

around 560 nm. The spectra where the peak of the reflectance occurs was measured at

the sand bar.

Comparing the ASD measured R. to the CASI data required converting the CASI

radiance data to reflectance. Ed, computed at one location in the CASI scene, was

determined from Equation (4) by using the reflectance of a land target visible in the

imagery. The reflectance of an asphalt road, measured by the ASD, and visible in the
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Figure 14: R, measured using the ASD instrument at the shallow plywood and deep mooring
stations on August 9.
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CASI spatial mode imagery, was used as the reference. The beach sand was not used as

the reference, although ASD measurements were made of the sand, because of detector

saturation of the CASI. The asphalt road was chosen since it appears to be considerably

darker than the sand. Saturation of the beach sand was also another reason why the sand

was not used as a reference for the CASI spectral mode data.

Figure 16 shows R,,, computed along a deep-to-shallow transect extracted from a

CASI spatial mode image, for five of the eleven bands. The sand bar is located

approximately between spectra 300 and spectra 360. Figure 17 shows R', computed for

the August 11 ASD transect data for the same CASI bands in Figure 16. The areal

coverage between the two transects is not exact, however, the results are quite good.

Note that the CASI values are slightly higher than the ASD values, however, the CASI

pixels cover a larger area than the ASD measurement, which may account for some of the

difference. In either case, reflectance increases with decreasing water depth. For the

spectral range shown, reflectance also increases with wavelength for both datasets. Figure

18 shows a deep-to-shallow transect extracted from an August 10 CASI spatial image.

No ASD transect data is a available for August 10, however, the results are comparable to

the August 11 data, except for the unusually high values at 554 nm. The CASI August 10

results suggest that there appears to be some variability in the water reflectance from day-

to-day since these values are a bit lower than those on August 11. An examination of the

water absorption and scattering are needed to verify this result. Spatial differences can

also be a factor in the difference in reflectance, especially since the CASI transects from

August 10 and 11 were not extracted from the exact same location.



40

Figure 16: Transect extracted from
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Figure 17:Remote Sensing Reflectance for Aug 11 ASD transect. The wavelengths correspond to the
wavelengths associated with the CASI spatial file llaugf24tlJan.
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Figure 18:Transect extracted from 10augf2ltl and ranges from the deep to the shalow.
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As mentioned in Chapter 3, PCA was applied water spectra from both ASD and

CASI spectral mode data in an attempt to reduce the dimensionality (i.e. number of bands)

of the data. To reduce the memory requirements of the computer performing the analysis,

both datasets were first reduced to 64 bands using linear interpolation, ranging from 400

nm to 912 nm. In both cases, the first two principal components (PCPs) accounted for

more than 95% of the variation in the data, with at least 80% associated with PCP1. The

first three eigenvectors associated with the ASD transect data are shown in Figure 19.

The associated PCPs are shown in Figure 20. Figure 21 shows the first three eigenvectors

from a sample CASI dataset. Notice that the shape of the PCP1 for the ASD data

resembles the shape of the reflectance curve shown in Figure 17. This result indicates that

PCP1 is related to brightness, which is related to changes in bathymetry. The fact that

PCP1 is correlated with brightness is not an uncommon result for this type of data, as

pointed out by Gonzalez [21]. PCP2 has an intriguing result due to the significant dip in

the curve after spectra 100. Spectra 100 is the location of the sandbar. One might

speculate that PCP2 may be related to changes in water turbidity, which would be a most

useful result. Notice also that the eigenvectors from both datasets have similar shapes.

PCA certainly reduces the dimensionality of the spectral data, however, the relationship

between the PCPs, other than PCP1, and some property of the spectral data is not

obvious. Further research in this area is certainly warranted.
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Figure 21: Sample CASI Eigenvectors
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Chapter 5

Conclusions and Recommendations

The results from the Eglin field experiment demonstrate that hyperspectral data

can be used to distinguish between both land and water features. Also, remote sensing

reflectance of the water derived from the CASI HSI sensor agrees reasonably well with in-

situ measurements from ASD instruments, and is within the expected range. PCA of both

the CASI and ASD data indicate that the 95% of the variance is contained in the first two

PCPs. Although the PCA results are not completely understood, further research is

needed.

It is apparent that HSI sensors will play an important role in the understanding of

biological and physical processes in the coastal maritime environment. Increased

understanding of this complex environment will lead to the development of more accurate

prediction models for chlorophyll concentration, water turbidity, particulate and biological

absorption and scattering, bathymetry, bottom reflectance, etc.

Support from DOD for coastal environmental research has increased significantly

since the end of the Cold War in order to support regional conflict scenarios. Civilian

research has increased too, due to continued emphasis in monitoring man's effect on the

ocean environment, in particular, and the global environment as a whole. Remote sensing

instruments provide the fastest and most cost effective method of collecting high
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resolution data. At this juncture, no spaceborne HSI sensors exist, however, the number

of airborne sensors are continuing to rise.

One of the major issues concerning the use of current HSI sensors in the maritime

environment is the SNR in the blue portion of the spectrum. Adequate SNR is required

because the reflectance of water features tend to be significantly smaller than land features.

Furthermore, due to the physics of light in water, the variability of water spectra is limited

to the 400nm to 700nm range. SNR can be increased using spatial averaging, however,

this is undesirable because of the loss of spatial resolution. SNR performance criteria for

sensors that will be used for maritime use must be taken in consideration.

To date, none of the current HSI instruments has been designed exclusively for

maritime applications. It may seem impractical to design a high resolution device just for

oceanographic work when most of the research is limited to the 400nm to 700nm range.

However, coastal environments typically are a combination of both land and water

features, therefore the HSI instrument must have adequate SNR and dynamic range to be

able to discern between features. In order to obtain satisfactory data over both land and

water, there is a need for a dual sensor suite consisting of one optimized for land use and

one optimized for ocean use. In the meantime, a more detailed investigation of the

capabilities of the HSI sensors summarized by Birk and McCord [17] would be

worthwhile. The results of this study would identify the sensors that are best suited for

collecting data in the maritime environment.

Although the CASI reflectance results agreed reasonably well with the ground

truth data, improvements to the sensor would greatly enhance its usability. The major
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drawback with using the CASI is that full spectral and spatial data over the entire scene is

not available simultaneously. Loss of data results in the spectral mode due to the spacing

between the look directions across the detector array and it is very difficult if not

impossible to identify targets or features in the track recovery row image since it is not

geometrically corrected. Fixing this problem, though, would most certainly drive up the

cost of operating the CASI. Its low cost of operation, as well as, high spatial resolution,

and adaptability to various aircraft platforms are its major selling points. SNR and

dynamic range also needs to be improved so as to better accommodate both water and

land features.

The ASD instruments proved to be quite useful tools in the coastal environment.

The instruments need to be ruggedized for the harsh environmental conditions associated

with field work. In particular, a water-proof design is highly recommended for use near

water.

The modeling community is in need of high resolution spatial and spectral data for

the development of coastal optics models. The models used in this paper are still under

development. Adequate ground truthing is still needed in order to validate the results

derived from the imagery. Instruments of the ASD genre will greatly aid in the collection

of the necessary in-situ measurements, but radiometric calibration of these instruments is

highly recommended especially if the data is to be compared to calibrated HSI data. The

SNR performance of the ASD instruments also needs to be evaluated. Integration of

precise positioning information using differential GPS is highly recommended for the ASD

instruments.
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High resolution spectral instruments have more than enough spectral coverage in

the visible portion of the spectrum. The PCA results in Chapter 4 showed that water

spectra contains a considerable amount of redundancy, thus PCA can certainly be used as

a data compression scheme. PCA could also be used as a coastal feature identification

technique in the same vein as the work performed by Huerte and Escadafal [19] for soil

identification. The spectral signatures of different bottom types, sand, vegetation, water

turbidity, chlorophyll concentration, etc. could be combined into a database as endmember

spectra. Spectral unmixing techniques could be used to identify the desired component

spectra at each pixel in the hyperspectral image.

The use of HSI sensors for remote sensing of the environment has a bright future.

Airborne systems will be utilized until sensor technology improves to the state where

spaceborne systems are practical. Shrinking budgets in both the private and public sectors

will require sharing of resources, which means that remote sensing instruments will most

likely be designed for use in a variety of applications.
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